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As Internet of Things devices become widely used in the real-world, it is crucial to protect them from mali-

cious intrusions. However, the data scarcity of IoT limits the applicability of traditional intrusion detection

methods, which are highly data-dependent. To address this, in this article, we propose the Open-Set Dan-

delion Network (OSDN) based on unsupervised heterogeneous domain adaptation in an open-set manner.

The OSDN model performs intrusion knowledge transfer from the knowledge-rich source network intrusion

domain to facilitate more accurate intrusion detection for the data-scarce target IoT intrusion domain. Un-

der the open-set setting, it can also detect newly-emerged target domain intrusions that are not observed

in the source domain. To achieve this, the OSDN model forms the source domain into a dandelion-like fea-

ture space in which each intrusion category is compactly grouped and different intrusion categories are

separated, i.e., simultaneously emphasising inter-category separability and intra-category compactness. The

dandelion-based target membership mechanism then forms the target dandelion. Then, the dandelion angular

separation mechanism achieves better inter-category separability, and the dandelion embedding alignment

mechanism further aligns both dandelions in a finer manner. To promote intra-category compactness, the

discriminating sampled dandelion mechanism is used. Assisted by the intrusion classifier trained using both

known and generated unknown intrusion knowledge, a semantic dandelion correction mechanism empha-

sises easily-confused categories and guides better inter-category separability. Holistically, these mechanisms

form the OSDN model that effectively performs intrusion knowledge transfer to benefit IoT intrusion detec-

tion. Comprehensive experiments on several intrusion datasets verify the effectiveness of the OSDN model,

outperforming three state-of-the-art baseline methods by 16.9%. The contribution of each OSDN constituting

component, the stability and the efficiency of the OSDN model are also verified.

CCS Concepts: • Computing methodologies → Machine learning; Transfer learning; Neural net-

works; • Security and privacy → Intrusion detection systems;
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1 INTRODUCTION

Internet of Things (IoTs) devices become prevalent in many real-world applications [6, 22, 38, 40].

However, they tend to be computational and energy-constrained, which hinder the deployment of

effective intrusion detection mechanisms. Together with the lack of maintenance, these limitations

compromise the security of IoT devices, making them vulnerable to attacks [20, 42]. To protect the

safety of IoT devices, an effective intrusion detection mechanism becomes indispensable [39].

The intrusion detection for IoT has drawn wide attention from the academic community. For

instance, signature-based intrusion detectors were proposed [8, 25, 26], which detected malicious

behaviours by pattern matching with sophisticated rule repositories. With the rapid growth of

machine learning techniques, some machine learning and deep learning-based intrusion detectors

were also proposed [28, 29, 44] and achieved satisfactory performance. However, these traditional

intrusion detection methods either require a sophisticated, thorough and up-to-date rule reposi-

tory, or a fully annotated training dataset. These prerequisites either require comprehensive exper-

tise knowledge to build and update, or require a tremendous amount of efforts to annotate. Besides,

due to the limited storage and communication capability of the IoT device and the concerns of user

privacy, it further hinders the availability of an IoT intrusion rule repository or training dataset.

Under such data-scarcity [39], these traditional intrusion detectors suffer from compromised

performance.

To work around the data-scarcity, domain adaptation-based (DA) intrusion detection methods

[17] can be leveraged by transferring the intrusion knowledge from a knowledge-rich source net-

work intrusion (NI) domain to assist the intrusion detection for the target IoT intrusion (II) domain.

Popular solutions [39, 42] performed intrusion knowledge transfer and meanwhile masked the het-

erogeneities between different domains and achieved satisfying outcomes.

Despite the effectiveness of these DA-based methods, they operate under the assumption that

both source and target domains share exactly the same type of intrusions. However, this assump-

tion is sometimes unrealistic in the real-world as the IoT intrusion domain can constantly confront

newly-emerged intrusion strategies [23]. Therefore, this assumption hinders the applicability of

traditional DA-based intrusion detectors. As a more general solution, Open-Set Domain Adap-

tation (OSDA) [10, 30] relaxes this assumption and allows the target domain to contain newly-

emerged intrusions unobserved in the source NI domain. Some OSDA methods were proposed

[14, 18, 21], which tackled this challenging setting via hyperspherical feature space learning, se-

mantic recovery learning and progressive graph learning, and so on. However, these research ef-

forts all suffered from some drawbacks, such as failing to utilise the graph embedding alignment

in the learned hyperspherical feature space, lacking the exploitation of the correction effect of

the semantics, and so on, which therefore provided room for improvement of a more effective

OSDA-based intrusion detector.

In this article, inspired by the structure of the dandelion, we propose the Open-Set Dandelion

Network (OSDN) based on unsupervised heterogeneous DA in an open-set manner. The OSDN

model tackles the IoT data scarcity by transferring intrusion knowledge from a knowledge-rich
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source NI domain to assist the knowledge-scarce IoT target domain. It relaxes the closed-set as-

sumption and can effectively detect both known and unknown intrusions faced by IoT devices,

making it applicable in real-world applications. To achieve this, the OSDN model forms the source

domain into a dandelion-like feature space with the goal of grouping each intrusion category com-

pactly and meanwhile separating different intrusion categories, i.e., achieving inter-category sep-

arability and intra-category compactness, the foundation for an accurate intrusion detector to

work on. The dandelion-based target membership mechanism then constructs the target dande-

lion. Then, the dandelion angular separation mechanism is leveraged to enhance inter-category

separability, together with the dandelion embedding alignment mechanism, which transfers intru-

sion knowledge via a graph embedding perspective. The discriminating sampled dandelion mech-

anism is also used to promote intra-category compactness. Besides, trained using both known and

generated unknown intrusion knowledge, the intrusion classifier produces probabilistic seman-

tics, which forms a semantic dandelion and in turn emphasises easily-confused categories and

provide correction for better inter-category separability. Holistically, these mechanisms form the

OSDN model that can effectively transfer intrusion knowledge for more accurate IoT intrusion

detection.

In summary, the contributions of this article are three-fold as follows:

— We realise the benefits of the Open-Set DA technique to perform intrusion knowledge trans-

fer and facilitate more accurate intrusion detection for the data-scarce IoT scenarios. The

OSDA-based intrusion detector also relaxes the closed-set assumption, making it a more

robust intrusion detector in the real-world.

— We formulate the intrusion feature space into a dandelion-like feature space. The pro-

posed OSDN model leverages mechanisms such as the dandelion angular separation mech-

anism (DASM), the dandelion embedding alignment mechanism (DEAM), the discriminat-

ing sampled dandelion mechanism (DSDM) and the semantic dandelion correction mech-

anism (SDCM) to promote inter-category separability and intra-category compactness in

the dandelion feature space, which is the foundation for an accurate intrusion detector to

work on.

— We conduct comprehensive experiments on five widely recognised intrusion detection

datasets and verify the effectiveness of the OSDN model against three state-of-the-art base-

lines. A 16.9% performance boost is achieved. Besides, the contribution of each OSDN con-

stituting component, the stability and the efficiency of the OSDN model is also verified.

The rest of the article is organised as follows: Section 2 categorises related works and sum-

marises the research opportunities. Section 3 presents model preliminaries and the OSDN model

architecture, followed by Section 4, in which the detailed mechanisms constituting the OSDN

model are presented. Section 5 presents the experimental setup and detailed experimental anal-

yses. The last section concludes the article. We provide an acronym table (Table 5) and a notation

table (Table 6 and 7) for better readability in Appendix A.

2 RELATED WORK

In this section, we introduce the related works in a categorised manner and outline our research

opportunities. In Figure 1, we summarise the traditional IoT intrusion detection methods, their

data dependency and their drawbacks, which reflect the merits of the domain adaptation-based

intrusion detection methods for the data-scarce IoT scenarios. The OSDN method belongs to the

open-set domain adaptation-based intrusion detector.

ACM Trans. Internet Technol., Vol. 24, No. 1, Article 4. Publication date: February 2024.
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Fig. 1. Summarisation of IoT intrusion detection methods, the data dependency and drawback of traditional

intrusion detection methods, and the merits of domain adaptation-based intrusion detection methods. The

OSDN method belongs to the open-set domain adaptation-based intrusion detector.

2.1 Traditional Intrusion Detection

Intrusion detection has drawn wide attention from the research community. Traditional intrusion

detection methods, including signature-based intrusion detectors [7, 25, 26], which require a so-

phisticated rule repository for decision-making. It can only detect malicious intrusions if their

patterns match certain rules in the repository. Anomaly-based intrusion detectors [4, 5, 33, 37] are

also popular. These methods need to go through a comprehensive training process based on a well

annotated training dataset to learn the patterns of normal traffic behaviours and then flag any traf-

fic that deviates from the normal patterns. With the rapid advance of machine learning and deep

learning techniques, ML and DL-based intrusion detectors are also widely used. Possible methods

include multi-kernel SVM [29], isolation forest [9] and deep learning models such as autoencoders

[24, 28] and capsule network [44], and so on.

However, all these traditional intrusion detection methods may be hindered by the IoT data-

scarcity due to their strong data dependency on a well-built intrusion rule repository or a finely-

annotated training dataset. Building an intrusion rule repository requires sophisticated expertise

knowledge, and can hardly be thorough and up-to-date. Besides, finely annotating a training

dataset is both labour and time-intensive. Without enough annotated datasets, the learning process

of anomaly-based, ML-based and DL-based methods is significantly hindered, resulting in compro-

mised efficacy. Therefore, it naturally leads to the domain adaptation-based solutions, which can

work under data-scarce IoT scenarios by performing intrusion knowledge transfer, a merit that

outperforms traditional intrusion detection methods.

2.2 Domain Adaptation for Intrusion Detection

Domain adaptation can transfer intrusion knowledge from a knowledge-rich source domain to

facilitate more accurate intrusion detection for the target domain. Hence, it possesses the merit

to comfortably work under the data-scarce IoT scenario. Wu et al. [42] proposed a Joint Seman-

tic Transfer Network, aiming to address the IoT intrusion detection problem under the semi-

supervised heterogeneous DA setting. Later, the Geometric Graph Alignment method was also

proposed by Wu et al. [39] to tackle the intrusion detection for completely unsupervised target

ACM Trans. Internet Technol., Vol. 24, No. 1, Article 4. Publication date: February 2024.
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IoT domains. There are other DA methods such as [19, 41, 43], which performed intrusion knowl-

edge transfer via Wasserstein distance minimisation, adversarial learning, Pareto optimal solution

searching, adaptive recommendation matching, and so on.

However, the traditional domain adaptation methods work under the closed-set assumption

that the intrusion categories in both source and target domains are exactly the same. Hence, these

methods cannot tackle the case in which new IoT intrusions emerge as time goes by, limiting their

applicability in the real-world.

2.3 Open-Set Domain Adaptation for Intrusion Detection

Open-Set DA methods relax the closed-set assumption of traditional DA methods and allow the

target IoT domain to possess new intrusions unobserved in the source domain. Jing et al., [14]

presented an open-set DA method with semantic recovery to better exploit the semantic informa-

tion of the unknown target intrusions. However, it put no effort to explore the possibility brought

by the hyperspherical structure formulation with excellent inter-category distinguishability. Li et

al., [18] explored the open-set DA problem via the angular margin separation network. Despite its

effectiveness, it lacked finer alignment achievable by graph embedding and ignored the correction

effect of the semantics. Besides, Luo et al., [21] investigated the graph embedding-based open-set

DA solution. However, the proposed Progressive Graph Learning (PGL) also failed to investigate

the usefulness of angular-based hyperspherical space with excellent separability and compactness.

2.4 Research Opportunity

The OSDN model transfers intrusion knowledge via the dandelion-based feature space that empha-

sises both inter-category separability and intra-category compactness, which is lacked by previous

open-set DA methods as in [14, 21]. Besides, the graph embedding alignment can achieve both finer

feature space alignment and tighter intra-category structure via adversarial learning. Such mecha-

nisms were not attempted in [14, 18]. Moreover, the OSDN model leverages the semantic dandelion

correction mechanism, the utilisation of the semantic dandelion fills the void in [18]. The semantic

correction is also lacked in these aforementioned methods. By combining these methods to form a

holistic framework, the OSDN model can perform finer intrusion knowledge transfer and benefit

IoT intrusion detection.

3 MODEL PRELIMINARY AND ARCHITECTURE

In this section, we introduce the preliminaries and the architecture of the proposed OSDN model.

3.1 Model Preliminary

The OSDN model works under the unsupervised open-set DA setting with heterogeneities exist

between domains. Following common notations in [42], we denote the source NI domain DS as

follows:

DS = {XS ,YS } = {(xSi
,ySi

)}, i ∈ [1,nS ],

xSi
∈ RdS ,ySi

∈ [1,K] ,
(1)

where XS contains nS source NI domain traffic features, each feature vector is represented in dS

dimensions.YS is the corresponding intrusion category label within a total number ofK categories,

one normal category and others are intrusion categories. Similarly, the target II domain DT is

defined as follows:

DT = {XT ,YT } = {(xTi
,yTi

)}, i ∈ [1,nT ],

xTi
∈ RdT ,yTi

∈ [1,K ′],K ′ > K .
(2)
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Fig. 2. The architecture of the OSDN model and the interrelationships between the OSDN’s constituting

components.

Under the open-set DA setting, the intrusion categories of the source NI domain is a subset of the

intrusion categories of the target II domains, i.e., YS ⊂ YT ,K ′ > K . Both domains shareK common

intrusion categories. Furthermore, the target II domain contains K ′ − K new intrusion categories

unobserved in the source domain. Under the unsupervised setting, the ground truth labels of the

target II domain remain agnostic during the training process. As a heterogeneous DA problem,

heterogeneities present between domains, e.g., dS � dT .

3.2 The OSDN Architecture

The architecture of the OSDN model has been presented in Figure 2. To perform intrusion knowl-

edge transfer, features in each domain will be normalised to form a unit hyperspherical space and

then be projected into a dC -dimensional common feature subspace (the grey box) by its corre-

sponding feature projector (the trapezoids). The feature projector E is defined as follows:

f (xi ) =

{
ES (xi ) if xi ∈ XS

ET (xi ) if xi ∈ XT

f (xi ) ∈ R
dC .

(3)

As illustrated in Figure 3, the common feature subspace aims to group each shared intrusion cat-

egory in a compact manner (each pappus of the dandelion, i.e., intra-category compactness), and

meanwhile achieves excellent separability between intrusion categories, i.e., inter-category sepa-

rability. For these unknown new intrusions in the target II domain, since their number is agnostic,

therefore, instead of deliberately grouping them in a brute-force manner, the dandelion-analogous

common feature subspace allows them to spread in any gap between pappuses to promote dis-

tinguishability between shared and unknown intrusion categories. As visualised in Figure 3, by

making the common feature subspace analogous to the structure of the dandelion, i.e., achieving

excellent intra-category compactness and inter-category separability, the shared classifier C can

then make accurate intrusion detection decisions.

The source dandelion can be formed directly since the source domain is completely supervised.

Then, the dandelion-based target membership mechanism (the red box in Figure 2) is used to form

the target dandelion based on the spatial relationship between target instances and the source

dandelion. Once both source and target dandelions are formed, the dandelion angular separation

mechanism (the orange boxes in Figure 2) is utilised to enhance the inter-category separability

in each dandelion. Besides, a dandelion embedder is leveraged to generate graph embeddings for

ACM Trans. Internet Technol., Vol. 24, No. 1, Article 4. Publication date: February 2024.
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Fig. 3. The analogy between the structure of a dandelion and the dandelion-like common feature subspace.

Each pappus corresponds to a shared intrusion category, it needs to be compact and well-separated from

other intrusion categories (pappuses), simultaneously achieving both intra-category compactness and inter-

category separability. Target unknown intrusion categories reside in the gaps between pappuses to achieve

distinguishability. The analogy between dandelion and the ideal common feature subspace leads to the nam-

ing of the OSDN.

dandelions and it is used in two ways (the brown boxes in Figure 2): the graph embeddings of

source and target dandelions are aligned to promote better alignment between domains; moreover,

sampled child dandelions are produced and their graph embeddings need to confuse a discrimina-

tor to achieve finer intra-category compactness. To better train the shared intrusion classifier C ,

the source domain data provides supervision information. To equip the intrusion classifier with

knowledge of target unknown intrusions, unknown instances residing in the pappus gaps in the

source dandelion are generated for unknown intrusion training. Lastly, the probabilistic seman-

tic yielded by the shared intrusion classifier also works as a correction to deliberately emphasise

easily-confused categories and remind the dandelion angular separation mechanism to separate

them, forming a correction loop (the purple box in Figure 2).

Finally, by forming these mechanisms into a holistic model, fine-grained intrusion knowledge

transfer can be achieved and the shared and unknown intrusion categories will be well-separated

so that the shared classifier C can enjoy excellent intrusion detection efficacy for the target II

domain.

4 THE OSDN ALGORITHM

In this section, we present the detailed mechanism of each OSDN constituting component and the

overall optimisation objective of the model.

4.1 Dandelion-based Target Membership Mechanism (DTMM)

The source dandelion can be easily formed based on its supervision information. Then, the source

dandelion will guide the membership decision for unsupervised target instances to form the target

dandelion. For each source intrusion category i , the maximum intra-category deviation di
max will

be calculated as follows:

d (i)max = max
(
1 − COS

(
x (i)

Sj
, μ(i)

S

))
, j ∈

[
1,n(i)

S

]
,

μ(i)
S
=

1

n(i)
S

n
(i )
S∑

j=1

x (i)
Sj
,

(4)
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whereCOS() stands for Cosine Similarity, n(i)
S

denotes the number of instances in the i th intrusion

category in the source domain, μ(i)
S

denotes the mean of the source intrusion category i and x (i)
Sj

means the j th instance of the source i th intrusion category. Then, each target instance will be

assigned to its nearest source category i if it resides within the maximum deviation range of source

category i , i.e.,

yD
Tj
=

⎧⎪⎪⎨⎪⎪⎩
argmin

i

(1 −COS(xTj
, μ(i)

S
)) if 1 −COS(xTj

, μ(i)
S
) ≤ d (i)max

K + 1 otherwise ,
(5)

where yD
Tj

represents the dandelion-based membership for the j th target instance xTj
. Otherwise,

that target instance will be assigned to the unknown category K + 1 to avoid deteriorating the

compactness of its closest intrusion category. Unlike methods such as [14, 18] that perform K-

means clustering of unknown intrusions, the OSDN assigns all unknown intrusions into a sin-

gle category K + 1 and hence does not rely on the availability of the prior knowledge on the

number of unknown intrusion categories and is more practical in the real-world. Besides, the

OSDN model does not deliberately enforce all unknown target instances to reside at a single place,

it allows unknown intrusions to reside at any pappus gap in the target dandelion. Deliberately

aligning unknown target instances coming from different intrusion categories may cause negative

transfer.

4.2 Dandelion Angular Separation Mechanism (DASM)

To increase the separability between known intrusion categories and meanwhile enhance the dis-

criminability between known and unknown intrusion categories, i.e., enlarge the gap between

pappuses, the OSDN model will achieve these goals from an angular perspective. First, the cen-

troid of each intrusion category will be calculated. Then, the source category pair-wise Cosine

similarity matrix CSS will be calculated as follows:

CSS =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
CS11

S
CS12

S · · · CS1K
S

CS21
S

CS22
S

· · · CS2K
S

...
...

. . .
...

CSK1
S CSK2

S · · · CSKK
S

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

CS i j
S
= COS

(
μ(i)

S
, μ(j)

S

)
,

(6)

whereCS i j
S

represent the Cosine similarity between the i th and j th intrusion category of the source

NI domain. By minimising the sum of the upper triangle of the matrix CSS , it enlarges the inter-

category angular divergence. The source dandelion separation loss LSS is defined as follows:

LSS =
2

K(K − 1)

K−1∑
i=1

K∑
j=i+1

CS i j
S
. (7)

The target dandelion Cosine similarity matrixCST and the corresponding target dandelion separa-

tion loss LST are defined similarly. By minimising both LSS and LST , it promotes better dandelion

inter-category separability from an angular perspective.

4.3 Dandelion Embedding Alignment Mechanism (DEAM)

To further promote a finer alignment between the source and target dandelions, a dandelion graph

embedder is used to produce the graph embeddings for both dandelions. To achieve this, each

ACM Trans. Internet Technol., Vol. 24, No. 1, Article 4. Publication date: February 2024.
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Fig. 4. Illustrating example of the OSDN discriminating sampled dandelion mechanism to enhance intra-

category compactness.

dandelion is formulated as a graph, defined as follows:

GS =< VS ,ES >

VS =
{
V (i)

S

}
, i ∈ [1,K],V (i)

S
= μ(i)

S

ES =
{
Ei, j

S

}
,Ei, j

S
=

������μ(i)S
− μ(j)

S

������2
2
, i ∈ {p} ∪ [1,K], j ∈ {p} ∪ [1,K], i � j ,

(8)

whereGS denotes the source dandelion graph,VS and ES stand for vertices and edges inGS , respec-

tively and GT is defined similarly. Each vertex V (i)
S

is the centroid of the corresponding intrusion

category. The graph is fully connected and each vertex is also connected with the origin, denoted

as p.

In the OSDN model, we apply the Feather network [32] as the graph embedder. As a graph

embedding algorithm, it enjoys several merits: first, the Feather network can work in an unsuper-

vised manner, which works comfortably under the data-scarce IoT scenario; second, the Feather

network enjoys a linear time complexity as proved in [32], the low complexity can enhance the

efficiency of the intrusion detection model in real-world applications; finally, the Feather network

is comprehensively verified [32] to have superior graph embedding performance.

Using the graph embedder, each dandelion graph will be mapped into a dG -dimensional graph

embedding space, in which the more geometrically similar between dandelion graphs, the more

similar the graph embeddings will be. Then, the dandelion embedding alignment loss LEA is de-

fined as follows:

LEA = | |ϕS − ϕT | |
2
2 ,ϕS ,ϕT ∈ RdG , (9)

where ϕS denotes the graph embedding of the source domain dandelion. By minimising the dan-

delion embedding alignment loss, both dandelions will be further aligned and hence will promote

better intrusion knowledge transfer, as verified by experimental evidences in Section 5.6.

4.4 Discriminating Sampled Dandelion Mechanism (DSDM)

To further boost the intra-category compactness and hence promote better known-intrusion sepa-

rability and unknown-intrusion discriminability, a discriminating sampled dandelion mechanism

is proposed. As illustrated in Figure 4, one instance per intrusion category is randomly sampled

to form a new child dandelion, such as the orange and the green dandelion in Figure 4. The more

compact each intrusion category is, the more similar the embeddings of child dandelions will be.

Hence, the OSDN achieves this goal via a discriminating perspective. First, both source and target

ACM Trans. Internet Technol., Vol. 24, No. 1, Article 4. Publication date: February 2024.
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domain intrusion features will be fused in the common feature subspace to form a fused dande-

lion, then, N child dandelions will be sampled, where the i th pappus in each child dandelion is a

randomly selected instance from the i th category from the fused dandelion. Next, a discriminator

is confused using the discriminating sampled dandelion loss LCP , defined as follows:

LCP =
1

2
(loд(D(ϕS )) + loд(D(ϕT ))) +

1

N

N∑
j=1

(
1 − loд

(
D
(
ϕ j

DD∗

)))
, (10)

in which DDS , DDT , and DD
j
∗ denote the source, target and j th sampled dandelion, ϕ denotes

the dandelion graph embedding and D() denotes the discriminator. By assigning DDS and DDT

with label 1 and assign sampled child dandelions with label 0, letting the network to minimise the

LCP will confuse the discriminator to be incapable to distinguish whether the given dandelion

embedding is generated from a randomly sampled dandelion or not. Meanwhile, the discriminator

will try to stay unconfused. Once the minimax game between the network and the discriminator

reaches an equilibrium, the graph embeddings of source, target and sampled child dandelions will

become indistinguishable, which in turn enhances the intra-category compactness, as illustrated

in Figure 4.

4.5 Semantic Dandelion Correction Mechanism (SDCM)

The source NI domain is completely supervised, however, it lacks the knowledge of unknown in-

trusions in the target II domain. Therefore, directly using the source NI domain supervision to

train the shared intrusion classifier C will significantly hinder its ability to detect unknown intru-

sions. To tackle this issue, the OSDN model generates nR instances residing in the gaps between

source dandelion pappuses, and treat these generated instances as unknown intrusions to equip

the intrusion classifier C with the ability to detect both known and unknown intrusions under

the open-set DA setting. The overall supervision loss of known and unknown training LSU P is

defined as follows:

LSU P = LSU PS
+ LSU PU

=
1

nS

nS∑
j=1

LCE (C(f (x j )),yj ) +
1

nR

nR∑
j=1

LCE (C(f (x j )),yj )

yj =

{
ySj

if x j ∈ XS

K + 1 if x j ∈ XR

,

(11)

where LCE denotes the cross entropy loss and XR represents generated unknown instances for

unknown training.

Once the intrusion classifierC is well-trained, it can then yield probabilistic semantics for each

intrusion data instance j, i.e., the inter-category probabilistic correlations, denoted aspj . Therefore,

the semantic information can also form new semantic dandelions DDS∗ in the semantic space,

defined as follows:

DD
(i)

SS
=

1

n(i)
S

n
(i )
S∑

j=1

p(i)
Sj
,DD

(i)

ST
=

1

|yD
T
= i |

|yD
T
=i |∑

j=1

p(i)
Tj
, (12)

where DDi
SS

denotes the i th pappus of the source semantic dandelion DDSS , n(i)
S

represents the

number of source i th category instances, yD
T denotes the membership assigned to target instances

by the source dandelion in Section 4.1. Then, the Cosine similarity matrix CSSM between both
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Fig. 5. The OSDN semantic dandelion correction mechanism. It will point out easily confused intrusion

category pairs from the probabilistic semantic perspective (the orange part), which will act as a correction

to the dandelion angular separation mechanism (the green part).

semantic dandelions are calculated as follows:

CSSM =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
CS11

S M CS12

S M · · · CS1K
S M

CS21
SM CS22

S M · · · CS2K
S M

...
...

. . .
...

CSK1
SM CSK2

SM · · · CSK K
S M

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

CS i j
SM
= COS(DD

(i)

SS
,DD

(j)

ST
) .

(13)

Ideally, the i th intrusion category from both source NI and target II domain should share simi-

lar inter-category probabilistic semantics, while different intrusion categories from both domains

should have their inter-category probabilistic semantics diverge from each other. To achieve this,

the OSDN model minimises the semantic dandelion correction loss LSC as follows:

LSC =
2

K(K + 1)

K∑
i=1

K∑
j=i

CS i j
SM
. (14)

By minimising the CS i j
SM
, i � j, inter-category probabilistic semantics will be diverged from each

other, leading to better inter-category discriminability. It is worth noting that the LSC also min-

imises theCS ii
SM

, i.e., maximising the divergence between cross-domain same-category probabilis-

tic semantics. The rationale is as follows: if minimising theCS ii
SM

can easily compromise the seman-

tic of the i th intrusion category, then it indicates the i th intrusion category can be easily confused

with other categories from the probabilistic semantic perspective, as indicated in Figure 5. There-

fore, deliberately minimisingCS ii
SM

can exploit and emphasise easily-confused intrusion category

pairs, i.e., pointing out a possible point to correct for the dandelion angular separation mechanism.

Consequently, by utilising this correction mechanism, it can further boost the dandelion separation

efficacy, as supported by experimental evidences in Section 5.6 and in turn enhances the intrusion

detection accuracy.

4.6 Overall Optimisation Objective

Overall, the optimisation objective of the OSDN model is defined as follows:

min
ES ,ET ,C

(αSLSU PS
+ αU LSU PU

+ βSLSS + βT LST + δLEA + θLSC + γLCP )

max
D

(γLCP ) ,
(15)
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whereαS ,αU , βS , βT , δ , θ andγ are hyperparameters controlling the influence of the corresponding

loss components. We utilise the gradient reversal layer [11] for the discriminator, which acts as an

identity function during forward propagation and reverses the gradient during backpropagation to

achieve an end-to-end optimisation process for the OSDN model. Once the above minimax game

reaches an equilibrium, the intrusion knowledge is transferred in a fine-grained manner, and the

intrusion detection efficacy can therefore benefit.

5 EXPERIMENT

To verify the effectiveness of the OSDN model, we perform experiments on five comprehensive and

representative intrusion detection datasets with three state-of-the-art baseline counterparts. We

also verify the performance stability of the OSDN model under varied openness settings and ma-

nipulated hyperparameter settings and demonstrate the contribution and necessity of each OSDN

constituting component. Finally, we verify the computational efficiency of the OSDN model.

5.1 Experimental Datasets

We use five comprehensive intrusion detection datasets. Network intrusion detection datasets in-

clude NSL-KDD, UNSW-NB15 and CICIDS2017. IoT intrusion detection datasets include UNSW-

BOTIOT and UNSW-TONIOT.

Network Intrusion Dataset: NSL-KDD This dataset [36] contains benign network traffic and

four types of real-world intrusions, such as probing attacks, Denial of Service (DoS) attacks, and so

on. It enjoys excellent data quality compared with its previous version [13]. We follow [2] to use

a reasonable amount of 20% of the dataset during experiments. Following [12], we use the top-31

most informative features out of 41 features as the feature representation and denote the dataset

as K.

Network Intrusion Dataset: UNSW-NB15 The dataset [27] was released in 2015 and was con-

structed on a comprehensive security testing platform commonly used by the industry. It includes

normal network traffic with nine categories of modern intrusion patterns, such as DoS attack, re-

connaissance attack, and so on, and possesses high data quality. We perform data preprocessing

to remove four features out of the original 49 features that have a value of 0 for nearly all records.

We denote the dataset as N.

Network Intrusion Dataset: CICIDS2017 This dataset [34] was released in 2017 and con-

tained up-to-date intrusion trends that include seven intrusion categories, represented in 77 di-

mensions. We use 20% of the dataset provided by its creator, and perform preprocessing steps

such as categorical-numerical data conversion. We follow [35] to use the top-40 most informative

features, and denote the dataset as C.

IoT Intrusion Dataset: UNSW-BOTIOT This dataset [15] was released in 2017. It is con-

structed on a realistic testbed involving commonly-used IoT devices such as the weather station,

smart fridge, and so on, and utilises the common lightweight IoT communication protocol MQTT.

The dataset contains four up-to-date intrusion categories, represented in 46 dimensions. We fol-

low the advice from the dataset creator to use the top-10 most informative features. The dataset is

denoted as B.

IoT Intrusion Dataset: UNSW-TONIOT The dataset [3] was released in 2021 and involved

up-to-date IoT protocols and standards. The testbed used is sophisticated, with seven types of real

IoT devices such as the GPS tracker, the weather meter, and so on, and capturing heterogeneous

features. The dataset contains nine types of common IoT intrusions [1], such as the DoS attack,

scanning attack, and so on. We follow [31] to leverage 10% of the dataset, and select two IoT devices,

i.e., the GPS tracker and the weather meter, denoted as G and W, respectively.
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Dataset Comprehensiveness and Intrusion Methods The datasets used during experiments

are comprehensive and representative. First, these datasets are widely recognised by the intrusion

detection research community with a broad range of usage. Second, these datasets are recently

released and contain modern intrusion trends and patterns, some of them are released in 2021.

Third, these datasets all involve widely recognised testbeds. The IoT datasets also involve real-

world IoT devices deployed in a real-world environment. Finally, the network and IoT datasets

have at most eight shared intrusion categories, with a coverage of 100%, 55%, 100%, 100% and 98%

on NSL-KDD, UNSW-NB15, CICIDS2017, UNSW-BOTIOT and UNSW-TONIOT, respectively. The

transferrable intrusion knowledge reflects modern intrusion trends. Hence, the datasets used are

sufficient to verify the effectiveness of the OSDN model.

5.2 Implementation Details

We implement the OSDN model using the deep learning framework PyTorch. The feature pro-

jectors are implemented as a single-layer neural network and use LeakyRelu as the activation

function. Likewise, both the intrusion classifier C and the discriminator D are also implemented

as single-layer neural networks.

We apply cross validation with grid search to tune hyperparameters. Since all experiments share

a single set of hyperparameter settings, the tuning effort is not too laborious. The default hyper-

parameter settings are as follows: αS = 0.8, αU = 0.1, βS = βT = 0.75, δ = 0.001, θ = 1.0, γ = 1.0,

number of sampled dandelions N = 10 and number of sampled unknown instances nR = 100.

Additionally, the stability and robustness of the OSDN model with manipulated hyperparameters

in their corresponding reasonable ranges are also verified in Section 5.8.

During evaluation, we follow [42] to use accuracy, category-weighted precision (P), recall (R)

and F1-score (F) as evaluation metrics. Their definitions are as follows:

Accuracy =

∑K
k=1(TP

(k) +TN (k))

nT
, (16)

Precision =
K∑

k=1

|X
(k)
T

|

nT
· Precision(k) =

K∑
k=1

|X
(k)
T

|

nT
·

TP (k)

TP (k) + FP (k)
, (17)

Recall =
K∑

k=1

|X
(k)
T

|

nT
· Recall (k) =

K∑
k=1

|X
(k)
T

|

nT
·

TP (k)

TP (k) + FN (k)
, (18)

F1 =

K∑
k=1

|X
(k)
T

|

nT
·

2 · Precision(k) · Recall (k)

Precision(k) + Recall (k)
, (19)

where the true positiveTP (k) denotes the number of category k intrusions being correctly detected,

similar forTN (k), FP (k) and FN (k). During experiments, we evaluate the performance in two modes:

the ACC mode which evaluates the prediction with the corresponding ground truth intrusion label,

and the IND mode, which treats all known and unknown intrusions as a single intrusion class.

As an open-set DA method, following Kundu et al. [16], we define openness O as follows:

O = 1 −
K

K ′
. (20)

The openness O lies in the range between 0 and 1, the larger the openness is, the more unknown

classes will be in the target II domain.
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5.3 State-of-the-art Baselines

We use three state-of-the-art baseline methods to verify the superiority of the OSDN model, which

include AMS [18], SR-OSDA [14], and PGL [21]. The AMS method attempts the OSDA problem

by formulating a framework with four phases. In phase 1, a discriminative representation of seen

classes is learned to benefit the seen and unseen intrusion separation performed in the second

phase. After performing the seen and unseen separation and the target domain is pseudo-labelled,

the phase 3 further optimises the feature representation. Both phase 2 and 3 also form an iterative

loop, which gradually improves the quality of intrusion recognition quality. Finally, phase 4 learns

a re-projection, which promotes the generalisability of unseen intrusion recognition without sacri-

ficing the ability to correctly recognise the seen classes. The SR-OSDA method deals with the OSDA

problem by firstly separating seen and unseen intrusion instances progressively via a threshold-

based pseudo-label assignment mechanism and the K-means clustering. Then, the intrusion knowl-

edge transfer is performed by mapping both domains into a domain-invariant and discriminative

feature space. Finally, the semantic information is utilised to better exploit the unknown target

intrusions, so that they are not deliberately confounded together, which causes negative transfer.

The PGL method integrates a graph neural network with the episodic training strategy and mean-

while applies adversarial learning to bridge the gap between two intrusion domains. In the episodic

training strategy, the model progressively enlarges the labelled set via pseudo-labelling and utilise

the pseudo-labelled target samples for episodic training. On top of it, the graph neural network is

benefitted to perform more accurate intrusion detection. We summarise their differences with the

OSDN model as follows:

— From the dandelion-based feature space perspective, the AMS method attempts this direc-

tion. However, it lacks other mechanisms such as the graph embedding-based dandelion

alignment and the dandelion compactness enhancement, and also fails to form the semantic

dandelion and explore its correction effect.

— From the graph embedding perspective, the PGL method utilises the graph embedding dur-

ing knowledge transfer. However, the PGL completely ignores the benefit brought by utilis-

ing the graph embedding in a dandelion-based feature space.

— From the semantic alignment perspective, all these methods lack effort to build a semantic

hyperspherical space to guide the inter-category separation in the dandelion-based feature

space, leaving a void to be filled.

Therefore, these state-of-the-art methods are comparable and representative to verify the effec-

tiveness of the OSDN model.

5.4 Intrusion Detection Performance

The intrusion detection accuracy of nine randomly selected tasks with varied openness has been

presented in Table 1. As we can observe, the OSDN model outperforms other baseline counter-

parts by a large margin, achieving a 20.9% and 12.9% performance improvement under two modes,

respectively. We also measure the intrusion detection performance using three other metrics and

present the results in Figure 6. Under both modes, the OSDN model is positioned at the top-right

corner in all three tasks, indicating that the OSDN model achieves the best precision and recall

performance compared with other methods, and hence it is natural to observe the best F1-score is

also yielded by the OSDN model. The best precision performance indicates the highest amount of

intrusions flagged by the OSDN model are correct, while the best recall performance demonstrates

the OSDN model can successfully flag as many intrusions as possible. As a harmonic mean of pre-

cision and recall, the best F1-score performance further verifies the OSDN model can elegantly

balance between flagging as many intrusions as possible and simultaneously avoid triggering too
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Table 1. The Intrusion Detection Accuracy Results

Tasks K→G, O = 0.6 N→W, O = 0.4 C→W, O = 0.5 K→B, O = 0.5 K→G, O = 0.2

Methods ACC IND ACC IND ACC IND ACC IND ACC IND

AMS 42.90 54.26 36.02 58.30 42.70 58.98 42.12 62.48 44.02 57.14

SROSDA 44.02 57.15 34.32 57.28 37.25 57.36 43.13 62.02 43.56 55.78

PGL 40.42 57.17 43.85 58.38 45.63 62.18 42.80 59.52 39.95 57.14

OSDN 76.18 89.94 61.79 64.51 59.20 63.10 53.78 67.42 75.83 90.11

Tasks K→W, O = 0.71 C→B, O = 0.5 C→W, O = 0.66 C→W, O = 0.33 Average

Methods ACC IND ACC IND ACC IND ACC IND ACC IND

AMS 38.36 59.44 49.26 65.92 41.44 57.98 42.98 59.22 42.20 59.30

SROSDA 36.24 57.88 49.56 66.33 38.44 56.36 38.78 58.46 40.59 58.74

PGL 34.52 46.89 51.53 67.68 39.92 60.10 45.05 61.41 42.63 58.94

OSDN 75.05 78.31 56.22 69.56 57.32 62.31 56.39 64.94 63.53 72.24

Fig. 6. Precision, Recall and F1-Score performance on three tasks under two modes. A-A denotes the per-

formance of method AMS under ACC mode. PGL, SR-OSDA and OSDN (Ours) are denoted as P, S and O,

respectively. The X-axis and Y-axis represent precision and recall, respectively. The F1-score is marked as text

in the diagram. The red diagonal line marks f (x) = x .

many false alarms. The same result is also verified by the OSDN’s nearest proximity from the

red diagonal line among all methods as shown in Figure 6. Hence, it demonstrates the real-world

applicability of the OSDN model as an intrusion detector.

5.5 Robustness and Stability under Varied Openness

We first present the performance of the OSDN model and its baseline counterparts under varied

openness in Figure 7. We can observe that the OSDN model stably outperforms its baseline coun-

terparts under varied openness evaluated using both accuracy and F1-score. Besides, compared

with other baseline methods, the OSDN model shows a flatter trend with less severe fluctuation.

Hence, it demonstrates the robustness of the OSDN method under varied openness levels.

We further evaluate the OSDN model against two more tasks under both large and small open-

ness ranges. The results are shown in Figure 8. The task in Figure 8(a) and (b) has a relatively higher

openness range and the task in Figure 8(c) and (d) presents a relatively lower openness range. From

both Figure 7 and Figure 8, the OSDN model maintains a relatively stable trend without heavy fluc-

tuation even when the openness varied significantly. Therefore, the OSDN’s capability to detect
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Fig. 7. Intrusion detection accuracy and F1-score performance under varied openness levels. The accuracy

results under two modes are shown in (a)–(b). The F1-score results under two modes are shown in (c)–(d).

Fig. 8. Intrusion detection accuracy and F1-score performance for two tasks under large and small openness

levels in (a)–(b) and (c)–(d), respectively.

unknown intrusions in the target II domain under varied openness levels is verified and can en-

hance its real-world usefulness.

5.6 Ablation Study

To verify the positive contribution and the necessity of each constituting component of the OSDN

model, six groups of ablation studies are performed and the corresponding results are demon-

strated in Table. 2. In the ablation group A, the unknown training mechanism is ablated, which

causes the accuracy to drop around 5.3% and 3.6% under two modes, respectively. In the ablation

group B, either the source or target dandelion angular separation mechanism (B1 and B2), or both

of them (B3) are dropped. As we can observe, lacking any of the DASM will result in a significant

performance reduction, hence it verifies the necessity of the DASM for both domains. Besides,

using the DASM for only one domain dandelion will further deteriorate the intrusion detection

efficacy. The reason is that when both DASMs are turned off, other mechanisms such as the se-

mantic dandelion correction and discriminating sampled dandelion mechanism will still partially

achieve the dandelion separation effect. However, only using a single DASM will end up with a

severe dandelion misalignment. Hence, worse performance is observed for the ablation groups B1

and B2.

The dandelion embedding alignment mechanism is removed in the ablation group C. Without it,

the performance drops by 10.5% and 6.6% under two modes, respectively. A heavier performance

drop is observed in the ablation group D, in which the semantic dandelion correction mechanism

is eliminated. Without this mechanism, there will be no semantic-assisted correction for under-

separated intrusion categories, resulting in compromised intrusion detection efficacy. In the abla-

tion group E1, the discriminating sampled dandelion mechanism is turned off, and in the ablation

group E2, the traditional instance domain discriminator substitutes the proposed DSDM. As we
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Table 2. Ablation Study Results for Five Ablation Study Groups

Group
Experiment

Setting

N→W, O = 0.40 C→G, O = 0.71 K→W, O = 0.71 Average

ACC IND ACC IND ACC IND ACC IND

A αU = 0 54.87 60.45 72.36 82.97 69.00 73.06 65.41 72.16

B βS = 0 βT = 0

B1 ✕ � 52.62 59.82 68.51 80.45 60.24 67.08 60.46 69.12

B2 � ✕ 55.29 60.49 66.96 80.25 63.31 68.37 61.85 69.70

B3 ✕ ✕ 54.47 61.44 72.20 83.72 67.10 72.23 64.59 72.46

C δ = 0 55.89 62.22 67.34 80.05 57.27 65.24 60.17 69.17

D θ = 0 45.15 58.35 58.10 77.02 48.22 58.86 50.49 64.74

E
Discriminating

Strategy

E1 γ = 0 56.55 61.61 67.21 78.43 59.89 66.71 61.22 68.92

E2 Domain Adv 54.13 60.03 72.55 83.69 60.03 66.70 62.24 70.14

F No DA 44.22 57.26 42.87 60.60 43.16 57.13 43.42 58.33

αU = 0.1,δ = 0.001

Full βS = βT = 0.75 61.79 64.51 75.13 84.34 75.05 78.31 70.66 75.72

γ = 1.0,θ = 1.0

can see, completely lacking the adversarial learning significantly hinders the intrusion detection

performance, which yields a 9.4% and 6.8% performance reduction under two modes, respectively.

Although the substituting domain adversarial learner slightly increases the performance compared

with the ablation group E1, it still presents a performance that is much lower than the full OSDN

model.

Finally, in the ablation group F, the domain adaptation mechanism is completely turned off to

verify that the HDA mechanism plays an indispensable role. As we can see, removing the intrusion

knowledge transfer performed by the HDA mechanism significantly degrades the intrusion detec-

tion performance, which is the worst among all ablated groups. Therefore, it justifies the necessity

of having the HDA mechanism, and shows that the HDA mechanism makes a non-negligible con-

tribution towards more accurate IoT intrusion detection.

Overall, the full OSDN model outperforms all its ablated counterparts by a significant margin,

which indicates that all constituting components of the OSDN model contribute positively towards

finer intrusion knowledge transfer and hence are indispensable for achieving excellent intrusion

detection performance.

We further verify the statistical significance of each component’s contribution via the signif-

icance T-test with the significance threshold of 0.05. The results are presented in Figure 9. The

grey area in the middle stands for the significance threshold −loд(0.05). Among each dimension

of the radar chart, the higher the value is, the more statistically significant the contribution is for

that corresponding component. As we can observe, under all three tasks and all two modes, the

coloured areas present a wider coverage than the grey shaded area. The results verify the statistical

soundness of all components’ contributions.

5.7 Separability and Compactness Analysis

The ideal common feature subspace should have the inter-category divergence as large as possible

to achieve good separability and meanwhile have the intra-category variation as small as possible

to achieve compactness. To verify the constituting components of the OSDN model contribute

positively towards these goals, we follow Equation (7) to calculate the separability from an angular
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Fig. 9. Hypothesis testing results under the significance threshold of 0.05 to verify the statistical significance

of the contribution made by each OSDN constituting component. For better visualisation, we omit ablation

group F due to its significant differences compared with the full OSDN method.

Fig. 10. Separability measurement results on four tasks between the hyperspherical-based baseline AMS,

the full OSDN model and ablated groups of the OSDN model that affect the separability.

perspective on the source-target combined dandelion DDS∪T , defined as follows:

CSS∪T =
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(21)

where CSS∪T denotes the inter-pappus Cosine similarity matrix of the source-target combined

dandelion andCS i j
S∪T

represents the Cosine similarity between the i th and j th pappus of the source-

target combined dandelion. Then, the separability measurement SP is defined as follows:

SP =
2

K(K − 1)

K−1∑
i=1

K∑
j=i+1

CS i j
S∪T
, (22)

the smaller the separability measurement SP is, the better the separability is for the source-target

combined dandelion. We present the separability measurement results between the hyperspherical-

based baseline AMS, the separability-related ablated groups and the full OSDN model in Figure 10.
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Fig. 11. Compactness measurement results on four tasks between the hyperspherical-based baseline AMS,

the full OSDN model and ablated groups of the OSDN model that affect the compactness.

Fig. 12. Hyperparameter sensitivity analysis for hyperparameter αS , αU , βS , βT , and δ under their corre-

sponding reasonable range. The dashed lines and solid lines indicate two modes, respectively. The horizontal

lines indicates the best-performed baseline counterpart.

As we observe, both the full OSDN model and its ablated groups enjoy better separability com-

pared with the AMS baseline. Moreover, the full OSDN model presents the best inter-category

separability by achieving the lowest SP measurement. Hence it verifies the positive contribution

of OSDN’s constituting components towards enhancing inter-category separability, and the supe-

rior performance of the OSDN model over its hyperspherical-based counterpart.

We then follow Equation (4) to measure the compactness by the average category-wise maxi-

mum deviation dmax , defined as follows:

dmax =
1

K

K∑
i=1

d (i)max , (23)

the smaller the dmax is, the better the compactness performance is. Again, the measurement re-

sults presented in Figure 11 indicate the OSDN model outperforms both the baseline method AMS

and its compactness-related ablated groups by a large margin. Hence, the excellent intra-category

compactness achieved by the OSDN model is verified.

Overall, by achieving the best inter-category separability and intra-category compactness, the

OSDN model can lead to more accurate intrusion detection performance.

5.8 Hyperparameter Sensitivity Analysis

We verify the stability and robustness of the OSDN model under varied hyperparameter settings

within their corresponding reasonable range. The results are presented in Figure 12 and Figure 13.

The dashed lines and solid lines indicate two modes, respectively. The horizontal lines indicates

the best-performed baseline counterpart.

We observe the OSDN model performs relatively stable without showing significant fluctua-

tion in nearly all hyperparameter settings. As well, the OSDN model constantly outperforms the
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Fig. 13. Hyperparameter sensitivity analysis for hyperparameter θ , γ , unknown instance amount nR used

in the intrusion classifier unknown training and the sampled child dandelion number N used in the DSDM,

under their corresponding reasonable range.

Table 3. Total Training Time, Measured in Minutes

Methods C→G, O = 0.67 K→B, O = 0.5 C→W, O = 0.25 Avg

AMS 14.69 14.65 15.01 14.78

SROSDA 14.57 14.42 14.55 14.51

N
nR =102 =103

N
nR =102 =103

N
nR =102 =103

OSDN =10 4.47 5.46 =10 4.42 5.41 =10 4.47 4.76 9.65

=102 14.06 15.00 =102 14.49 14.43 =102 14.02 14.83

The performance of the OSDN model under different performance-sensitive hyperparameter settings are tested.

Table 4. Inference Time Per Network Traffic Instance, Measured in Milliseconds (10−3 Second)

Methods C→G, O = 0.67 K→B, O = 0.5 C→W, O = 0.25 Avg

AMS 1.68 1.65 1.68 1.67

SROSDA 1.63 1.63 1.67 1.64

N
nR =102 =103

N
nR =102 =103

N
nR =102 =103

OSDN =10 0.100 0.099 =10 0.098 0.099 =10 0.101 0.103 0.100

=102 0.098 0.100 =102 0.099 0.100 =102 0.101 0.102

The performance of the OSDN model under different performance-sensitive hyperparameter settings are tested.

best-performed baseline method under nearly all hyperparameter settings. The OSDN model ap-

plies a single set of hyperparameter setting when facing different data domains and different tasks

and still achieves such a stable level of performance. Hence, it verifies the stability and robustness

of the OSDN model under manipulated hyperparameter settings.

5.9 Intrusion Detection Efficiency

We finally verify the training and intrusion detection inference efficiency of the OSDN model. The

training time taken has been summarised in Table 3, and the inference time per network traffic

instance has been summarised in Table 4. We only compare the OSDN model with the top-two

best-performing baseline methods. As shown in Table 3, under varied settings of the OSDN model,

the OSDN model performs more efficiently compared with its counterparts in nearly all settings.

Since the model training can be performed on computationally-sufficient devices such as network
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gateway servers, therefore, the training efficiency of the OSDN model is satisfactory. Besides, as

indicated in Table 4, the OSDN model significantly outperforms its baseline counterparts in terms

of the inference time taken to examine a network traffic instance. Therefore, the results verify

the efficiency of the OSDN model, and demonstrate its real-world applicability as an efficient and

accurate intrusion detector.

6 CONCLUSION

In this article, we propose the OSDN based on unsupervised heterogeneous domain adaptation

in an open-set manner. The OSDN model tackles the IoT data scarcity by transferring intrusion

knowledge from source NI domain to promote more accurate intrusion detection for the target

IoT domain. The relaxation of the closed-set assumption lets the OSDN model detect both known

and newly-emerged unknown intrusions in the IoT intrusion domain, hence it is more applica-

ble in the real-world. The OSDN model achieves this by first forming the source domain into a

dandelion-like feature space that emphasises inter-category separability and intra-category com-

pactness. Then, the dandelion-based target membership mechanism constructs the target dande-

lion for intrusion knowledge transfer. The dandelion angular separation mechanism is used to pro-

mote inter-category separability, while the dandelion embedding alignment mechanism facilitates

knowledge transfer from a graph embedding perspective. Also, the discriminating sampled dan-

delion mechanism is used to promote intra-category compactness. Trained using both known and

generated unknown intrusion information, the intrusion classifier yields probabilistic semantics

that can emphasise easily-confused categories and hence provide correction for the inter-category

separation mechanism. Holistically, these mechanisms form the OSDN model and benefit in a

more effective intrusion detection for IoT scenarios. Comprehensive experiments on five intrusion

datasets are conducted. The OSDN model outperforms three state-of-the-art baseline methods by

16.9%. The effectiveness of each OSDN constituting component, the stability and the efficiency of

the OSDN model are also verified. For future research, it is worthwhile to extend the OSDN model

to the multi-source setting, in which the intrusion knowledge from multiple source domains can

jointly benefit the open-set intrusion knowledge transfer. Besides, we can also consider using a

category-wise attention mechanism during the intrusion knowledge transfer to account for di-

verse knowledge transfer sufficiency for each intrusion category. We will leave these as our future

research directions.
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A APPENDIX

A.1 Acronym Table

Table 5. The Acronym Table and the Corresponding Interpretation

(Based on the Order of Appearance in the Article)

Acronym Interpretation

OSDN Open-Set Dandelion Network

DA Domain Adaptation

NI Network Intrusion

II IoT Intrusion

OSDA Open-Set Domain Adaptation

DASM Dandelion Angular Separation Mechanism

DEAM Dandelion Embedding Alignment Mechanism

DSDM Discriminating Sampled Dandelion Mechanism

SDCM Semantic Dandelion Correction Mechanism

ML Machine Learning

DL Deep Learning

CS Cosine Similarity

EA Embedding Alignment

CP Compactness

SUP Supervision

SM Semantic

SC Semantic Correction

CE Cross Entropy
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A.2 Notation Table

Table 6. The Notation Table and the Corresponding Interpretation (Based on the

Order of Appearance in the Article)

Notation Interpretation

DS Source NI domain

XS Source NI domain traffic features

YS Source NI domain traffic intrusion labels

xSi
The ith traffic instance in XS

ySi
The intrusion label of xSi

nS Number of instances in XS

dS Instance dimension of XS

K Number of intrusion categories in DS

K ′ Number of intrusion categories in DT

f (xi ) The feature projector

ES The source feature projector

ET The target feature projector

dC The dimension of the common feature subspace

d (i)max The maximum intra-category deviation of source intrusion category i
COS() Cosine Similarity

n(i)
S

Number of instances in the ith source intrusion category

μ(i)
S

Mean of the source intrusion category i

x (i)
Sj

The jth instance of source ith intrusion category

yD
Tj

The dandelion-based membership for the jth target instance xTj

CSS The source category pair-wise Cosine similarity matrix

CS i j
S

The Cosine similarity between the ith and jth source intrusion category

LSS Source dandelion separation loss

LST Target dandelion separation loss

GS The source dandelion graph

VS Vertices in GS

EG Edges in GS

V (i)
S

The ith vertex in the GS

Ei j
S

The edge connecting V (i)
S

and V (j)
S

p The origin

LEA Dandelion embedding alignment loss

ϕS The graph embedding of the source domain dandelion

LCP Discriminating sampled dandelion loss

D() The discriminator

GDDS
The graph embedding of the source dandelion

GDDT
The graph embedding of the target dandelion

G
DD

j
∗

The graph embedding of the jth sampled dandelion

N The amount of child dandelion being sampled

LSU P The overall supervision loss

LSU PS
The source supervision loss

LSU PU
The unknown supervision loss

LCE The cross entropy loss

nR The amount of unknown instances being generated

XR The generated unknown instances for unknown training

C The intrusion classifier
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Table 7. The Notation Table and the Corresponding Interpretation (Continued)

Notation Interpretation

p(i)
Sj

The probabilistic semantic of the jth source instance in category i

DDSS The source semantic dandelion

DD
(i)

SS
The ith pappus of the source semantic dandelion

CSSM The Cosine similarity matrix between semantic dandelions

CS i j
SM

The Cosine similarity between DD
(i)

SS
and DD

(j)

ST

LSC The semantic dandelion correction loss

αS ,αU Hyperparameter controlling LSU PS
and LSU PU

, respectively

βS , βT Hyperparameter controlling LSS and LST , respectively

δ Hyperparameter controlling LEA

θ Hyperparameter controlling LSC

γ Hyperparameter controlling LCP

TP (k) True positive of category k

|X
(k)
T

| Number of target instances in intrusion category k
O The openness level

DDS∪T The source-target combined dandelion

CSS∪T The inter-pappus Cosine similarity matrix of DDS∪T

μ(i)
S∪T

The ith pappus of CSS∪T

CS i j
S∪T

The Cosine similarity between μ(i)
S∪T

and μ(j)
S∪T

dmax The average category-wise maximum deviation
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